Reactions of 1-aryl-2,2-dihalogenoethanone oximes with tetrasulfur tetranitride $\left(\mathrm{S}_{4} \mathrm{~N}_{4}\right)$: a general method for the synthesis of 3-aryl-4-halogeno-1,2,5-thiadiazoles

Sung Cheol Yoon, Jaeeock Cho and Kyongtae Kim *
Department of Chemistry, Seoul National University, Seoul 151-742, Korea

1-Aryl-2,2-dichloro-7, 1-aryl-2,2-dibromo-8, 1-aryl-2-bromo-2-fluoro-9 and 1-aryl-2-chloro-2-fluoroethanone oximes 10 have been prepared by allowing the corresponding ketones to react with hydroxylamine hydrochloride in EtOH at room temperature. Stereochemical assignments for the oximes were made on the basis of ${ }^{1} \mathrm{H}$ NMR spectroscopic evidence and an X-ray crystallographic analysis of 1-(3-chlorophenyl)-2,2-dichloroethanone oxime 7f. The 1-aryl-2,2-dihalogenoethanone oximes react with tetrasulfur tetranitride in refluxing 1,4-dioxane to give 3-aryl-4-chloro-1, 3-aryl-4-bromo-2, and 3 -aryl-4-fluoro-1,2,5-thiadiazoles 3 in 69-98, 49-99, and 32-65\% yields, respectively. A mechanism for the formation of the 1,2,5-thiadiazoles is proposed.

Introduction

3-Aryl-4-halogeno-1,2,5-thiadiazoles 1-3 have attracted much attention since the 3 -chloro-, 3-fluoro, 3-aryl-4-chloro, and/or 3-aryl-4-fluoro-derivatives show herbicidal ${ }^{1}$ or nematicidal effects. ${ }^{2}$ The synthesis of 3 -chloro- and 3 -aryl-4-chloro-1,2,5thiadiazoles has been extensively studied by Weinstock and coworkers ${ }^{3}$ in a method involving the reaction of sulfur monochloride $\left(\mathrm{S}_{2} \mathrm{Cl}_{2}\right)$ with α-aminoacetonitrile bisulfate, α-aminophenylacetonitrile hydrochloride, isonitrosophenylacetonitrile, or glyoxime in DMF at different reaction temperatures. This method has been widely utilized for the synthesis of 3 -bromoand 3 -chloro-1,2,5-thiadiazoles. Alternatively, 3 -aryl-4-chloro$\mathbf{1}$ and 3-aryl-4-bromo-1,2,5-thiadiazoles 2 have been prepared by reactions of the corresponding 4 -hydroxy compounds with phosphorous oxychloride ${ }^{3}$ and phosphorus oxybromide, ${ }^{4}$ respectively, and 3-aryl-4-fluoro-1,2,5-thidiazoles 3 by treating the corresponding chloro analogues with potassium fluoride at elevated temperature. ${ }^{2}$

Recently we reported a facile and much improved synthesis of 3-aryl-1,2,5-thiadiazoles 4, by allowing 1-aryl-2-chloroethanone oximes 5 a to react with $\mathrm{S}_{4} \mathrm{~N}_{4}$ in refluxing 1,4-dioxane; ${ }^{5}$ no chlorine-containing $1,2,5$-thiadiazoles 1 were detected. However, treatment of 1-aryl-2-bromoethanone oximes 5b under the same conditions gave compounds 2 as the minor and compounds $\mathbf{4}$ as the major products (Scheme 1)

$\operatorname{ArC}(=\mathrm{NOH}) \mathrm{CXYZ}$

5a $X=C l, Y=Z=H$	$7 X=Y=C l, Z=H$
5b $X=B r, Y=Z=H$	$8 X=Y=B r, Z=H$
5c $X=Y=Z=F$	$9 X=B r, Y=F, Z=H$
	$10 X=C l, Y=F, Z=H$

Scheme 1

In order to widen the scope of the reaction with α-halogeno ketoximes, the readily available 1 -aryl-2,2,2-trifluoromethanone oximes $5 \mathbf{c}$ were treated with $\mathrm{S}_{4} \mathrm{~N}_{4}$ in refluxing 1,4-dioxane, ${ }^{6}$ to give 5 -aryl-5-trifluoromethyl- 5 H -1,3,2,4,6-dithiatriazines $\mathbf{6}$ as the major products. Because of this unexpected result together with the formation of $\mathbf{2}$ from the reactions of $\mathbf{5 b}$ with $\mathrm{S}_{4} \mathrm{~N}_{4}$, we have investigated on the reactions of the 1-aryl-2,2dihalogenoethanone oximes 7-10 with $\mathrm{S}_{4} \mathrm{~N}_{4}$ and describe herein over results.

Results and discussion

Synthesis of compounds 7-9

Although the synthesis and stereochemistry of E - and Z-5a and $\mathbf{5 b}$ have been much studied, ${ }^{7}$ the 1 -aryl-2,2-dihalogenoethanone oximes 7-10 have received little attention, apart from 2,2-dichloro-1-phenylethanone oxime $7 \mathrm{a}(\mathrm{Ar}=\mathrm{Ph})$ a patent for which describes its importance as an anti-herbicide. ${ }^{8}$ Since attempted synthesis of 7a according to literature procedures failed, reactions under different conditions were studied, ${ }^{9}$ and compounds 7 finally prepared via the 1 -aryl-2,2-dichloroethanones 12; the latter were prepared by chlorination of 1 arylethanones $\mathbf{1 1}$ according to a little modified literature procedures ${ }^{10}$ in good to moderate yields (Scheme 2). Reaction

Scheme 2
times, yields, and melting points of compounds 7 are summarized in Table 1.

Of the compounds $\mathbf{1 2}$ prepared, ${ }^{10}$ 12i $\left[\mathrm{Ar}=4-\mathrm{Cl} \mathrm{C}_{2} \mathrm{CH}-\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}\right], \quad 12 \mathrm{j}$ [$\left.\mathrm{Ar}=3-\mathrm{Cl}_{2} \mathrm{CHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}\right]$, and 12k $\left[4-\mathrm{Cl}_{2}-\right.$ $\mathrm{CHC}(\mathrm{O})$ biphenyl] are new. All of the compounds 7 except for $7 \mathbf{a}^{8}$ are new and their structures were assigned on the basis of spectroscopic data and elemental analyses.
The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{7 a - b}, 7 \mathbf{d}, 7 \mathbf{g}, \mathbf{h}$ and $\mathbf{7 j}$ exhibited two singlets at 6.48 and $7.40,6.45$ and $7.30,6.41$ and $7.60,6.50$ and $7.41,6.48$ and $7.37,6.47$ and 7.34 ppm , respectively, which were assigned to be methine proton signals of E and Z-oximes in view of the reported chemical shifts of methylene protons of Z - (4.42 ppm) and E-2-bromo-1phenylethanone oximes (4.30 ppm). ${ }^{7}$ However, compounds 7 c ,

Table 1 Reaction times, yields, and melting points of 1-aryl-2,2dichloroethanone oximes 7

Compd.	Ar	Time (t / h)	Yield $(\%)^{a}$	$\begin{aligned} & \mathrm{Mp} \\ & \left(T /{ }^{\circ} \mathrm{C}\right) \end{aligned}$
7 a	$\mathrm{C}_{6} \mathrm{H}_{5}$	24	86	Liquid ${ }^{\text {b }}$
7b	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	24	81	Liquid ${ }^{\text {b }}$
7 c	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	34	73	$112-114{ }^{\text {c }}$
7d	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	47	58	Liquid ${ }^{\text {b }}$
7 C	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	48	85	92-94 ${ }^{\text {c }}$
7 f	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	49	82	98-100 ${ }^{\text {d }}$
7 g	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	27	84	Liquid ${ }^{\text {b }}$
7h	$3-\mathrm{Cl}, 4-\mathrm{MeOC} 6 \mathrm{H}_{3}$	72	34	Liquid ${ }^{\text {d }}$
7 i	$4-\mathrm{Cl}_{2} \mathrm{CH}(\mathrm{HON}=\mathrm{C}) \mathrm{C}_{6} \mathrm{H}_{4}$	72	82	170-172 ${ }^{\text {e }}$
7 j	$3-\mathrm{Cl}_{2} \mathrm{CH}(\mathrm{HON}=\mathrm{C}) \mathrm{C}_{6} \mathrm{H}_{4}$	72	53	Liquid ${ }^{\text {b }}$
7k	$4^{\prime}-\mathrm{Cl}_{2} \mathrm{CH}(\mathrm{HON}=\mathrm{C})$ biphenyl-4-yl	72	86	133-135 ${ }^{\text {e }}$

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{E} / Z$ mixture. ${ }^{c, d, e} \mathrm{CHCl}_{3}, \mathrm{CCl}_{4}$, and EtOH were used as solvents for recrystallization, respectively.

Fig. 1 ORTEP drawing of compound 7f

7e, and 7f exhibited only a singlet at $7.58,7.50$, and 7.42 ppm Therefore, they were assigned as Z-oximes. This was confirmed by a X-ray single crystallographic analysis of compound $7 \mathbf{f}$ for which Fig. 1 shows an ORTEP drawing and Tables 2 and 3 , respectively, list selected bond distances and angles.

1-Aryl-2,2-dibromoethanone oximes $\mathbf{8}$ were prepared from 1-aryl-2,2-dibromoethanones $\mathbf{1 3}$ under the same conditions as for compounds 7 in good to moderate yields (Scheme 2). Compounds $\mathbf{1 3}$ prepared according to the literature procedures ${ }^{11}$ are known except for $\mathbf{1 3 g}\left(\mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Br}\right)$, $\mathbf{1 3 i}(\mathrm{Ar}=3$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Br}\right)$, 13k $\left[\mathrm{Ar}=4-\mathrm{Br}_{2} \mathrm{CHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Br}\right]$, 13l $\left[\mathrm{Ar}=3-\mathrm{Br}_{2} \mathrm{CHC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{X}=\mathrm{Br}\right]$, and $13 \mathrm{~m}\left(\mathrm{Ar}=4-\mathrm{Br}_{2} \mathrm{CH}-\right.$ $\mathrm{C}(\mathrm{O})$ biphenyl, $\mathrm{X}=\mathrm{Br})$. Reaction times, yields, and melting points for compounds $\mathbf{8}$ are summarized in Table 4.

For compounds $\mathbf{8 a}, \mathbf{8 d}, \mathbf{8 g}$, and $\mathbf{8 1}$, the presence of two singlets at 6.59 and $7.44,6.42$ and $7.59,6.46$ and 7.24 , and 6.43 and 7.29 ppm , respectively suggested that, as with compounds 7 , each product was a mixture of E - and Z-oximes. Other compounds $\mathbf{8}$ exhibited a singlet in the range of $7.18-8.16 \mathrm{ppm}$, indicating the formation of a single isomer, i.e. Z-oximes.

Similarly, 1-aryl-2-bromo-9 and 2-chloro-2-fluoro-ethanone oximes 10 were prepared via the corresponding 1-aryl-2-halogeno-2-fluoroethanones 15 which were, in turn, prepared by treatment of 1-aryl-2-fluoroethanones 14^{12} with bromine or thionyl chloride, respectively, according to literature procedures ${ }^{13}$ (Scheme 3). Yields of $\mathbf{1 5}$ decreased with reaction

$14 \quad \mathrm{X}=\mathrm{Br}, \mathrm{Cl} \quad 15$
Scheme 3

Table 2 Selected bond lengths (\AA) for compound $7 \mathbf{f}^{a}$

$\mathrm{Cl}(1)-\mathrm{C}(1)$	$1.736(3)$	$\mathrm{N}-\mathrm{C}(7)$	$1.282(4)$
$\mathrm{Cl}(2)-\mathrm{C}(8)$	$1.768(3)$	$\mathrm{C}(4)-\mathrm{C}(7)$	$1.481(4)$
$\mathrm{Cl}(3)-\mathrm{C}(8)$	$1.787(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.502(4)$
$\mathrm{O}-\mathrm{N}$	$1.389(3)$		

${ }^{a}$ Crystallographic numbering scheme, see Fig. 1.
Table 3 Selected bond angles $\left({ }^{\circ}\right)$ for compound $7 \mathbf{f}^{a}$

$\mathrm{C}(7)-\mathrm{N}-\mathrm{O}$	$113.9(2)$	$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(8)$	$121.1(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.7(3)$	$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$123.1(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$119.8(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(2)$	$112.1(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)$	$121.6(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(3)$	$110.1(2)$
$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(4)$	$115.8(2)$	$\mathrm{Cl}(2)-\mathrm{C}(8)-\mathrm{Cl}(3)$	$110.1(2)$

${ }^{a}$ Crystallographic numbering scheme, see Fig. 1.
Table 4 Reaction times, yields, and melting points of 1-aryl-2,2dibromoethanone oximes 8

Compd.	Ar	Time (t / h)	Yield $(\%)^{a}$	Mp $\left(T /{ }^{\circ} \mathrm{C}\right)$
$\mathbf{8 a}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	48	61	Liquid b
$\mathbf{8 b}$	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	72	58	$105-107^{c}$
$\mathbf{8 c}$	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	72	72	$125-127^{c}$
$\mathbf{8 d}$	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	48	75	Liquid b
$\mathbf{8 e}$	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	48	80	$100-101^{c}$
$\mathbf{8 f}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	86	82	$108-109^{d}$
$\mathbf{8 g}$	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	48	84	Liquid b
$\mathbf{8 h}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	36	74	$97-99^{d}$
$\mathbf{8 i}$	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	63	66	$80-82^{d}$
$\mathbf{8 j}$	$\mathrm{C}_{10} \mathrm{H}_{8}$	96	61	$97-98^{c}$
$\mathbf{8 k}$	$4-\mathrm{Br}_{2} \mathrm{CH}(\mathrm{HON=C}) \mathrm{C}_{6} \mathrm{H}_{4}$	72	76	$176-178^{d}$
$\mathbf{8 1}$	$3-\mathrm{Br}_{2} \mathrm{CH}(\mathrm{HON=C}=\mathrm{C}) \mathrm{C}_{6} \mathrm{H}_{4}$	72	93	Liquid b
$\mathbf{8 m}$	$4{ }^{\prime}-\mathrm{Br}_{2} \mathrm{CH}(\mathrm{HON=C}) b i p h e n y l-4-y l$	72	80	$173-175^{d}$

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{E} / \mathrm{Z}$ mixture. ${ }^{c, d} \mathrm{CCl}_{4}$ and EtOH were used as solvents for recrystallization, respectively.
temperatures $>50^{\circ} \mathrm{C}$, whereas the reaction proceeded very slowly at $<40^{\circ} \mathrm{C}$. Reaction times and yields of $\mathbf{9}, \mathbf{1 0}$, and $\mathbf{1 5}$ are summarized in Table 5.
All of compounds $\mathbf{1 5}$ prepared are known, whereas compounds $\mathbf{9}$ and 10 are new. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{9 a}$ and $\mathbf{1 0}$ show two singlets at 6.71 and 7.54 ppm due to the methine protons for the E - and Z-forms. For compounds $\mathbf{7 - 1 0}$, it has been found that where they exist as solids they appear to be solely Z isomers, whereas products which are oils are mixtures of E - and Z-geometrical isomers showing a preference for the latter form. The formation of Z-isomers in preference to E-isomers may be due to the ease of formation of hydrogen bonding between the OH group and the halogen atoms of α, α-dihalogeno ketoximes.

Reactions of 1-aryl-2,2-dihalogenoethanone oximes 7-10 with $\mathrm{S}_{4} \mathrm{~N}_{4}$

 The reactions of $\mathbf{7}$ and $\mathbf{8}$ with $\mathrm{S}_{4} \mathrm{~N}_{4}$ in refluxing 1,4-dioxane gave $\mathbf{1}$ and $\mathbf{2}$, respectively. Compounds $\mathbf{9}$ and $\mathbf{1 0}$ reacted with $\mathrm{S}_{4} \mathrm{~N}_{4}$ to give $\mathbf{3}$ under the same reaction conditions. The reactions of 7 and 8 were quenched when no spot corresponding to 7 ($R_{\mathrm{F}} \cong 0.09, \mathrm{C}_{6} \mathrm{H}_{6}$) and $\mathbf{8}\left(R_{\mathrm{F}} \cong 0.20, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ was observed on TLC, whereas those of $9\left(R_{\mathrm{F}} \cong 0.08, \mathrm{C}_{6} \mathrm{H}_{6}\right)$ and $10\left(R_{\mathrm{F}} \cong 0.07\right.$, $\mathrm{C}_{6} \mathrm{H}_{6}$) were quenched when the spot corresponding to $\mathrm{S}_{4} \mathrm{~N}_{4}$ ($R_{\mathrm{F}}=0.51, \mathrm{C}_{6} \mathrm{H}_{6}$-hexane, 1:1) had disappeared on TLC by the time the colour of the solution became reddish brown. Reaction times, yields and melting points of compounds $\mathbf{1 - 3}$ are summarized in Tables 6,8 , and 10 , respectively, and their analytical IR, and ${ }^{1} \mathrm{H}$ NMR data are summarized in Tables 7, 9, and 11, respectively.Of the compounds listed in Table 7, compounds $\mathbf{2 a}$ and $\mathbf{2 f}$ were reported to be prepared by treating 3 -hydroxy-4-phenyland 3-(4-chlorophenyl)-4-hydroxy-1,2,5-thiadiazoles with phosphorus oxybromide in 61 and 85% yields, ${ }^{4}$ respectively.

Table 5 Reaction times, yields, and melting points of 1-aryl-2-bromo-9 and 2-chloro-2-fluoro-ethanone oximes 10, and 1-aryl-2-halogeno-2fluoroethanones 15

Compound	Ar	X	Time (t / h)	Yield (\%) ${ }^{\text {a }}$	Compound	Time (t / h)	Yield (\%) ${ }^{\text {a }}$	$\mathrm{Mp}\left(T /{ }^{\circ} \mathrm{C}\right)$
15a	$\mathrm{C}_{6} \mathrm{H}_{5}$	Br	7	78	9a	48	84	Liquid ${ }^{\text {b }}$
15b	4-MeC66 H_{4}	Br	5	73	9b	48	91	94-96 ${ }^{\text {c }}$
15c	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	Br	9	71	9c	3	89	$101-103{ }^{\text {c }}$
15d	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	15	49	10	24	71	Liquid ${ }^{\text {b }}$

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{E} / \mathrm{Z}$ mixture. ${ }^{c} \mathrm{CHCl}_{3}$ was used as a solvent for recrystallization.
Table 6 Reaction times, yields, and melting points of 3-aryl-4-chloro-

1,2,5-thiadiazoles 1

Compound	Ar	Time (t / h)	$\begin{aligned} & \text { Yield } \\ & (\%)^{c} \end{aligned}$	$\mathrm{Mp}\left(T /{ }^{\circ} \mathrm{C}\right)$
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	4	98	$\begin{aligned} & 31-33^{c} \\ & \text { (lit., }^{2} 31.5-32.5 \text {) } \end{aligned}$
1b	4-MeC66 H_{4}	3	74	Liquid $\text { (lit., }{ }^{2} 27-28 \text {) }$
1c	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	3	85	101-103 ${ }^{\text {c }}$
1d	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	4	94	97-98 ${ }^{\text {c }}$
1e	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	6	97	$\begin{aligned} & 69-71^{c} \\ & \text { (lit., }^{2} 74-75.5 \text {) } \end{aligned}$
1 f	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	6	98	$\begin{aligned} & 38-39^{c} \\ & \text { (lit., }^{2} 37.5-38.5 \text {) } \end{aligned}$
1g	4-FC6 H_{4}	3	98	$\begin{aligned} & 35-37^{c} \\ & \text { (lit., }{ }^{2} 35-36.5 \text {) } \end{aligned}$
1h	3-Cl-, 4-MeOC6 H_{3}	12	84	83-85 ${ }^{\text {c }}$
1 i	$4-\mathrm{Y}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {b }}$	3	78	$129-131{ }^{d}$
1j	$3-\mathrm{Y}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {b }}{ }^{\text {a }}$	3	69	$124-125^{d}$
1k	4-Y-biphenyl ${ }^{\text {b }}$	5	91	159-161 ${ }^{\text {d }}$

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{Y}=3$-chloro-1,2,5-thiadiazol-4-yl. ${ }^{c, d}$ Hexane and EtOH were used as solvents for recrystallization, respectively.

The mechanism for the formation of compounds $\mathbf{1 - 3}$ is uncertain as shown in a variety of the reactions with $\mathrm{S}_{4} \mathrm{~N}_{4}$ previously studied. ${ }^{14}$ In order to determine the source of nitrogen atoms of compounds $\mathbf{1}-\mathbf{3},{ }^{15} \mathrm{~N}$-labelled hydroxylamine hydrochloride (${ }^{15} \mathrm{NH}_{2} \mathrm{OH} \mathrm{HCl}, 99$ atom $\%$) was used to prepare the ${ }^{15} \mathrm{~N}$-labelled oxime 7f, from which $\mathbf{1 f}$ was obtained (Scheme 4)

Scheme 4
Mass spectral data for $\mathbf{1 f}$ obtained from the ${ }^{15} \mathrm{~N}$-labelled oxime 7f shows the fragments having mass number $(\mathrm{m} / \mathrm{z}) 231(97.6 \%$, $\left.\mathrm{M}^{+}\right)$and $233\left(76.5 \%, \mathrm{M}^{+}+2\right)$, whereas that of $\mathbf{1 f}$ obtained from ${ }^{15} \mathrm{~N}$-unlabelled oxime 7f shows the fragments of mass number $(m / z) 230\left(97.6 \%, \mathrm{M}^{+}\right)$and $232\left(82.1, \mathrm{M}^{+}+2\right)$. The results indicate clearly that ${ }^{15} \mathrm{~N}$ atom of 7 f is involved as one of the nitrogen atoms of $1,2,5$-thiadiazole ring. Since the mass spectra of $\mathbf{1 f}$ formed via ${ }^{15} \mathrm{~N}$-labelled and ${ }^{15} \mathrm{~N}$-unlabelled oximes 7 f show the fragments having $(m / z) 138$ and 137, corresponding to the molecular weight of ${ }^{15} \mathrm{~N}$-labelled and ${ }^{15} \mathrm{~N}$-unlabelled 4chlorobenzonitriles, respectively, the N-5 atom of $\mathbf{1 f}$ is thought to originate from the oxime nitrogen atom.

On the basis of these results, we propose the following pathway in which nucleophilic attack of the hydroxy group of dihalogeno ketoximes 7-10 on the tetravalent sulfur atom of $\mathrm{S}_{4} \mathrm{~N}_{4}$ gives the intermediate 16; subsequently, nucleophilic displacement of the halogen atom on this by the amide ion gives a cyclic intermediate 17. Deprotonation of this, followed by cleavage of the $\mathrm{N}-\mathrm{S}$ and $\mathrm{N}-\mathrm{O}$ bonds gives an imide ion 18, which then cyclizes to give $\mathbf{1}$ and $\mathrm{HS}_{3} \mathrm{~N}_{3} \mathrm{O}$. Alternatively, formation of the intermediate $\mathbf{1 7}$ might be explained on the basis of $[4+2]$ cycloaddition between $\mathrm{S}_{4} \mathrm{~N}_{4}$ and the nitroso olefin 19^{15} which is believed to be readily formed in the presence of base existing in the reaction mixtures (Scheme 5).

The incorporation of an oxime nitrogen into the 1,2,5thiadiazoles is in contrast with the proposed mechanism for the formation of 3,4-diphenyl-1,2,5-thiadiazole by reaction of benzil monooxime with $\mathrm{S}_{4} \mathrm{~N}_{4}$, in which the $=\mathrm{NOH}$ group was completely eliminated and the two nitrogen atoms of 1,2,5thiadiazole originate from $\mathrm{S}_{4} \mathrm{~N}_{4}$. ${ }^{16}$

In conclusion, the geometry of 1-aryl-2,2-dihalogenoethanone oximes has been assigned on the basis of ${ }^{1} \mathrm{H}$ NMR spectroscopic data and a X-ray single crystallographic analysis in which solid oximes appear to be Z-isomers. However, oily liquid oximes exist as a mixture of E - and Z-isomers, showing preference for the latter. We have demonstrated the synthetic utility of $\mathrm{S}_{4} \mathrm{~N}_{4}$ by isolation of excellent yields of 1,2,5-thiadiazoles having a chlorine $\mathbf{1}$ or a bromine atom $\mathbf{2}$ at C-3 from the reactions with 1-aryl-2,2-dichloro- 7 and 1-aryl-2,2-dibromo-ethanone oximes 8, respectively. Similarly compounds $\mathbf{3}$ were obtained from the reactions with 1-aryl-2-bromo-9 and 1-aryl-2-chloro-2-fluoroethanone oximes $\mathbf{1 0}$ in fair yields. It has been shown that the 2-nitrogen atom of $\mathbf{1}$ has its origin in the oxime nitrogen atom of 7 .

Experimental

All melting points were determined on a Fisher-Johns melting point apparatus and are uncorrected. IR spectra were obtained on a Shimadzu IR-470 IR spectrophotometer for samples of

Table 7 Analytical, IR, and ${ }^{1} \mathrm{H}$ NMR data for 3-aryl-4-chloro-1,2,5-thiadiazoles 1

Compound (Formula)	Found (\%) (Required)				$v_{\text {max }}{ }^{a} / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right)$	$m / z(\mathrm{EI})$
	C	H	N	S			
$\begin{aligned} & \mathbf{1 c} \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 39.7 \\ & (39.8) \end{aligned}$	$\begin{aligned} & 1.7 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 17.4 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 13.3 \\ & (13.3) \end{aligned}$	$\begin{aligned} & 1597,1517,1350,1161,979 \\ & 739,704 \end{aligned}$	$\begin{aligned} & 8.44(4 \mathrm{H}, \mathrm{dd}, J \text { 15.8, 9.2, } \\ & \text { ArH) } \end{aligned}$	$\begin{aligned} & 241\left(100 \%, \mathrm{M}^{+}\right), 243(37.3, \\ & \left.\mathrm{M}^{+}+2\right), \quad 211 \quad(60.6), \quad 213 \\ & (23.1), 195(27.4), 197(10.4), \\ & 180(7.0), 160(29.9) \end{aligned}$
$\begin{aligned} & \mathbf{1 d} \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 39.75 \\ & (39.8) \end{aligned}$	$\begin{aligned} & 1.7 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 17.4 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 13.3 \\ & (13.3) \end{aligned}$	$\begin{aligned} & 1523,1338,1258,1174,998, \\ & 899,877,835,810,765,717, \\ & 666 \end{aligned}$	$\begin{aligned} & 7.64(1 \mathrm{H}, \mathrm{t}, J 7.9, \mathrm{ArH}), \\ & 8.34(2 \mathrm{H}, \mathrm{~d}, J 7.9, \mathrm{ArH}), \\ & 8.83(1 \mathrm{H}, \mathrm{~s}, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 241\left(100 \%, \mathrm{M}^{+}\right), 243(37.9, \\ & \left.\mathrm{M}^{+}+2\right), 211(22.6), 213(8.3), \\ & 195 \quad(51.9), 197 \quad(19.3), 180 \\ & (9.3), 160(26.2) \end{aligned}$
$\begin{aligned} & \mathbf{1 h} \\ & \left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}\right) \end{aligned}$	$\begin{aligned} & 41.4 \\ & (41.4) \end{aligned}$	$\begin{aligned} & 2.3 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 10.7 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 12.25 \\ & (12.2) \end{aligned}$	1590, 1504, 1343, 1280, 1159, 1062, 1018, 992, 813, 733, 698	3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), 7.00 (1 $\mathrm{H}, \mathrm{d}, J 8.7, \mathrm{ArH}), 7.89(1 \mathrm{H}$, d, J 8.7, ArH), 8.02 ($1 \mathrm{H}, \mathrm{s}$, ArH)	$\begin{aligned} & 260\left(100 \%, \mathrm{M}^{+}\right), 262(69.2, \\ & \left.\mathrm{M}^{+}+2\right), 264\left(14.2, \mathrm{M}^{+}+4\right), \\ & 245(40.9), 247 \quad(26.5), 199 \\ & (20.2), 167(17.4) \end{aligned}$
$\begin{aligned} & \mathbf{1 i} \\ & \left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right) \end{aligned}$	$\begin{aligned} & 38.1 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 17.7 \\ & (17.8) \end{aligned}$	$\begin{aligned} & 20.4 \\ & (20.3) \end{aligned}$	$\begin{aligned} & 1351,1171,880,853,839 \\ & 820,561 \end{aligned}$	8.10 (4 H, s, ArH)	$\begin{aligned} & 314\left(100, \mathrm{M}^{+}\right), 316(73.9, \\ & \left.\mathrm{M}^{+}+2\right), 318\left(17.4, \mathrm{M}^{+}+4\right), \\ & 253(63.0), 255 \\ & (26.6), \quad 221 \\ & (19.8), 160(28.5) \end{aligned}$
$\begin{aligned} & \mathbf{1} \mathbf{j} \\ & \left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right) \end{aligned}$	$\begin{aligned} & 38.1 \\ & (38.1) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 17.75 \\ & (17.8) \end{aligned}$	$\begin{aligned} & 20.4 \\ & (20.3) \end{aligned}$	$\begin{aligned} & 3067, \quad 1339, \quad 1304, \quad 1251, \\ & 1170,969,826,799 \end{aligned}$	$\begin{aligned} & 7.59(1 \mathrm{H}, \mathrm{t}, J 14, \mathrm{ArH}), 8.18 \\ & (2 \mathrm{H}, \mathrm{~d}, J 14, \mathrm{ArH}), 8.66(1 \\ & \mathrm{H}, \mathrm{~s}, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 314\left(100 \%, \mathrm{M}^{+}\right), 316(73.7, \\ & \left.\mathrm{M}^{+}+2\right), 318\left(17.0, \mathrm{M}^{+}+4\right), \\ & 253(54.9), 255 \quad(22.3), 221 \\ & (15.8), 160(30.2) \end{aligned}$
$\begin{aligned} & \mathbf{1 k} \\ & \left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right) \end{aligned}$	$\begin{aligned} & 49.0 \\ & (49.1) \end{aligned}$	$\begin{aligned} & 2.05 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 14.3 \\ & (14.3) \end{aligned}$	$\begin{aligned} & 16.4 \\ & (16.4) \end{aligned}$	$\begin{aligned} & 3079, \quad 3046, \quad 1607, \quad 1458 \\ & 1350, \\ & 932,799,780 \end{aligned}$	$\begin{aligned} & 7.74(4 \mathrm{H}, \mathrm{~d}, J 8.2, \mathrm{ArH}), \\ & 8.06(4 \mathrm{H}, \mathrm{~d}, J \\ & 8.2, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 390\left(100 \%, \mathrm{M}^{+}\right), 392(76.3, \\ & \left.\mathrm{M}^{+}+2\right), 394\left(20.5, \mathrm{M}^{+}+4\right), \\ & 297(65.5), 263 \quad(30.9), 236 \\ & (51.9), 204(72.6) \end{aligned}$

${ }^{a}$ IR spectra for $\mathbf{1 c}-\mathbf{h}$ were taken neat and KBr was used for those of $\mathbf{1 i}-\mathbf{k}$

Table 8 Reaction times, yields, and melting points of 3-aryl-4-bromo-1,2,5-thiadiazoles 2

Compd.	Ar	Time (t / h)	Yield (\%) ${ }^{\text {a }}$	$\mathrm{Mp}\left(T /{ }^{\circ} \mathrm{C}\right)$
2a	$\mathrm{C}_{6} \mathrm{H}_{5}$	3	95	$\begin{aligned} & 57-59^{c} \\ & \text { (lit., }{ }^{4} 59-60 \text {) } \end{aligned}$
2b	4-MeC66 H_{4}	3	92	27-29 ${ }^{\text {c }}$
2c	$4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	3	99	$101-102{ }^{\text {c }}$
2 d	$3-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	3	98	$102-103{ }^{\text {c }}$
2 e	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	4	97	$82-84{ }^{\text {c }}$
$2 f$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	3	96	$\begin{aligned} & 66-67^{c} \\ & \text { (lit., }{ }^{4} 60-61 \text {) } \end{aligned}$
2 g	4-FC6 H_{4}	3	98	58-60 ${ }^{\text {c }}$
2h	$4-\mathrm{MeOC} 6 \mathrm{H}_{4}$	3	94	75-77 ${ }^{\text {c }}$
2 i	$3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	5	95	Liquid
2 j	2-Naphthyl	4	86	70-71 ${ }^{\text {c }}$
2k	$4-\mathrm{Y}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {b }}$	12	93	135-137 ${ }^{\text {d }}$
2m	$3-\mathrm{Y}-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{\text {b }}$	3	49	128-129 ${ }^{\text {d }}$
2n	4-Y-biphenyl-4-yl ${ }^{\text {b }}$	5	86	176-178 ${ }^{\text {d }}$

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{Y}=3$-bromo-1,2,5-thiadiazol-4-yl. ${ }^{c, d}$ Hexane and EtOH were used as solvents for recrystallization, respectively.

KBr pellets or thin films. ${ }^{1} \mathrm{H}$ NMR spectra were determined on a Brüker 80 MHz spectrometer using tetramethylsilane as internal standard; J values are given in Hz . Mass spectra were obtained by electron impact at 70 eV at the Inter-University Center for Natural Sciences Research Facilities. Elemental analyses were determined by the Korea Basic Science Center. Column chromatography was performed on silica gel (Merck, 70-230, ASTM).
Tetrasulfur tetranitride was prepared by the reaction of sulfur monochloride with ammonia gas at room temperature. ${ }^{17}$ 1-Aryl-2,2-dichloroethanones $\mathbf{1 2}$ were prepared according to literature procedures ${ }^{10}$ except for the amount of chlorine gas employed ($7-10$ equiv.) and the reaction temperature (40 $59{ }^{\circ} \mathrm{C}$): 2,2-dichloro-1-phenylethanone 12a, ${ }^{18}$ liquid (Found: C, $50.75 ; \mathrm{H}, 3.2 ; \mathrm{Cl}, 37.0 . \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 50.9 ; \mathrm{H}, 3.2 ; \mathrm{Cl}$, $37.5 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1705(\mathrm{C}=\mathrm{O}): \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.84$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right)$, $7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; 2,2-$ dichloro-1-(4-methylphenyl)ethanone 12b, mp $55-56^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{10} \quad 54.5-55.3^{\circ} \mathrm{C}$); 2,2-dichloro-1-(4-nitrophenyl)ethanone 12c, $\mathrm{mp} 27-28^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{10} 27-28^{\circ} \mathrm{C}$); 2,2-
dichloro-1-(3-nitrophenyl)ethanone 12d, pale yellow oil (Found: $\mathrm{C}, 41.0 ; \mathrm{H}, 2.15 ; \mathrm{Cl}, 30.2 ; \mathrm{N}, 5.9 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{NO}_{3}$ requires $\mathrm{C}, 41.1$; $\mathrm{H}, 2.15 ; \mathrm{Cl}, 30.3 ; \mathrm{N}, 6.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1699$ (C=O); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.63\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 7.76(1 \mathrm{H}, \mathrm{t}, J 8$, $\mathrm{ArH}), 8.48(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and $8.89(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; 1-(4-$ bromophenyl)-2,2-dichloroethanone 12e, mp $61-62^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{10} \quad 61.6-62^{\circ} \mathrm{C}$); 1-(4-chlorophenyl)-2,2-dichloroethanone 12f, mp 47-48 ${ }^{\circ} \mathrm{C}$ (from CCl_{4}) (Found: C, $42.95 ; \mathrm{H}$, 2.3; $\mathrm{Cl}, 47.8 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 43.0 ; \mathrm{H}, 2.25 ; \mathrm{Cl}, 47.6$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1701(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.58(1 \mathrm{H}, \mathrm{s}$, CHCl_{2}) and $7.67(4 \mathrm{H}, \mathrm{dd}, J 31,8, \mathrm{ArH})$; 2,2-dichloro-1-(4fluorophenyl)ethanone $\mathbf{1 2 g}, \mathrm{mp} 38-40^{\circ} \mathrm{C}$ (from CCl_{4}) (Found: $\mathrm{C}, 46.4 ; \mathrm{H}, 2.4 ; \mathrm{Cl}, 34.3 . \mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{FO}$ requires C, $46.4 ; \mathrm{H}, 2.4 ; \mathrm{Cl}$, $34.25) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1702(\mathrm{C=O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.62$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}$), 7.17 ($1 \mathrm{H}, \mathrm{t}, J 9, \mathrm{ArH}$) and 8.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); 1-(3-chloro-4-methoxyphenyl)-2,2-dichloroethanone $\mathbf{1 2 h}, \mathrm{mp}$ $71-73{ }^{\circ} \mathrm{C}$ (from CCl_{4}) (lit. ${ }^{19} \quad 72-73^{\circ} \mathrm{C}$); 1,4-bis(dichloroacetyl)benzene 12i, mp $154-156^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 40.0; H, 2.0; O, 10.7. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}$ requires C, $40.0 ; \mathrm{H}, 2.0 ; \mathrm{O}$, $10.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO); $80 \mathrm{MHz}) 7.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 8.23(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; 1,3-$ bis(dichloroacetyl)benzene 12j, oil (Found: C, 40.0; H, 2.0; O, 10.8. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{4} \mathrm{O}_{2}$ requires C, $\left.40.0 ; \mathrm{H}, 2.0 ; \mathrm{O}, 10.7 \%\right) ; v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 7.60(2 \mathrm{H}$, $\mathrm{s}, 2 \mathrm{CH}), 7.70(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 8.33(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and 8.75 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$); 4,4'-bis(dichloroacetyl)biphenyl 12k mp 162 $164^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 51.15; H, 2.7; O, 8.6. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{4} \mathrm{O}_{2}$ requires C, $\left.51.1 ; \mathrm{H}, 2.7 ; \mathrm{O}, 8.5 \%\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1693(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-{ }^{2} \mathrm{H}_{6}\right]$-DMSO; 80 MHz$) 7.80(2 \mathrm{H}, \mathrm{s}$, CHCl_{2}), 7.49 and 7.83 ($8 \mathrm{H}, 2 \mathrm{~d}, J$ 8.3, ArH). 1-Aryl-2,2dibromoethanones 13 were prepared by the literature methods ${ }^{11}$: 2,2-dibromo-1-phenylethanone 13a $\mathrm{mp} 36-37^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 36^{\circ} \mathrm{C}$); 2,2-dibromo-1-(4-methylphenyl)ethanone 13b, mp 99-100 ${ }^{\circ} \mathrm{C}\left(\right.$ from CCl_{4}) (lit., ${ }^{11} 98-99^{\circ} \mathrm{C}$); 2,2-dibromo-1-(4-nitrophenyl)ethanone $13 \mathrm{c}, \mathrm{mp} 54-55^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 54-55^{\circ} \mathrm{C}$); 2,2-dibromo-1-(3-nitrophenyl)ethanone 13d, mp $54-55^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 55-56{ }^{\circ} \mathrm{C}$; 1-(4-bromo-phenyl)-2,2-dibromoethanone 13e, mp $91-92{ }^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 93-94{ }^{\circ} \mathrm{C}$); 1-(4-chlorophenyl)-2,2-dibromoethanone 13f, $\mathrm{mp} 92-93^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 93-94^{\circ} \mathrm{C}$); 2,2-dibromo-1-(4fluorophenyl)ethanone 13g, oil (Found: C, 32.5; H, 1.7; O, 5.4.

Table 9 Analytical, IR, and ${ }^{1} \mathrm{H}$ NMR data for 3-aryl-4-bromo-1,2,5-thiadiazoles 2

Compound (Formula)	Found (\%) (Required)				$v_{\text {max }}{ }^{a} / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right)$	m / z (EI)
	C	H	N	S			
$\begin{aligned} & \text { 2a } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{BrN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 39.8 \\ & (39.85) \end{aligned}$	$\begin{aligned} & 2.1 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 11.6 \\ & (11.6) \end{aligned}$	$\begin{aligned} & 13.4 \\ & (13.3) \end{aligned}$	$\begin{aligned} & 3060,1442,1353,1147,966 \\ & 835 \end{aligned}$	$7.48(3 \mathrm{H}, \mathrm{~m}, \mathrm{PhH}), 7.92(2$ $\mathrm{H}, \mathrm{~m}, \mathrm{PhH})$	$\begin{aligned} & 240\left(46.6 \%, \mathrm{M}^{+}\right), 242(50.3 \\ & \left.\mathrm{M}^{+}+2\right), 135(100) \end{aligned}$
$\begin{aligned} & \mathbf{2 b} \\ & \left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 42.4 \\ & (42.4) \end{aligned}$	$\begin{aligned} & 2.8 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (11.0) \end{aligned}$	$\begin{aligned} & 12.6 \\ & (12.6) \end{aligned}$		$\begin{aligned} & 2.42(3 \mathrm{H}, \mathrm{~s}, \mathrm{Me}), 7.56(4 \mathrm{H} \\ & \mathrm{dd}, J 42,8, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 254\left(57.2 \%, \mathrm{M}^{+}\right), 256(44.0 \\ & \left.\mathrm{M}^{+}+2\right), 149(100) \end{aligned}$
$\begin{aligned} & \text { 2c } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 33.6 \\ & (33.6) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 14.7 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 11.2 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 1597,1517(\mathrm{~s}), 1349(\mathrm{~s}) \\ & 1331,1313,1297,1163,981, \\ & 860,853,835,716 \end{aligned}$	8.23 (4 H, dd, J 14, 8, ArH)	$\begin{aligned} & 285\left(29.2 \%, \mathrm{M}^{+}\right), 287(27.5 \\ & \left.\mathrm{M}^{+}+2\right), 160(100) \end{aligned}$
$\begin{aligned} & \text { 2d } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 33.6 \\ & (33.6) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 14.7 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 11.2 \\ & (11.2) \end{aligned}$	3091, 1613, 1532, 1491, 1344, 1262, 1162, 1094, 1078, 1011, 826, 803, 723	$\begin{aligned} & 7.67(1 \mathrm{H}, \mathrm{t}, J 7, \mathrm{ArH}), 8.32 \\ & (2 \mathrm{H}, \mathrm{~d}, J 7, \mathrm{ArH}), 8.83(1 \mathrm{H}, \\ & \text { s, ArH) } \end{aligned}$	$\begin{aligned} & 285\left(31.6 \%, \mathrm{M}^{+}\right), 287 \\ & \left.\mathrm{M}^{+}+2\right), 160(100) \end{aligned}$
$\begin{aligned} & \text { 2e } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 30.0 \\ & (30.0) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 8.7 \\ & (8.75) \end{aligned}$	$\begin{aligned} & 10.05 \\ & (10.0) \end{aligned}$	$\begin{aligned} & 1590, \quad 1498, \quad 1450, \quad 1398, \\ & 1350,1142,958,813 \end{aligned}$	7.69 (4 H, dd, J 17, 8, ArH)	$\begin{aligned} & 318\left(44.0 \%, \mathrm{M}^{+}\right), 320(89.3, \\ & \left.\mathrm{M}^{+}+2\right), 322\left(39.9, \mathrm{M}^{+}+4\right), \\ & 213(100), 215(95.1) \end{aligned}$
$\begin{aligned} & \text { 2f } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrClN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 34.8 \\ & (34.9) \end{aligned}$	$\begin{aligned} & 1.45 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 10.1 \\ & (10.2) \end{aligned}$	$\begin{aligned} & 11.7 \\ & (11.6) \end{aligned}$	1597, 1502, 1451, 1348, 1145, 1092, 1019, 967, 827	8.25 (4 H, dd, J 18, 7, ArH)	$\begin{aligned} & 274\left(18.2^{\%}, \mathrm{M}^{+}\right), 276 \\ & \left.\mathrm{M}^{+}+2\right), 169(100) \end{aligned}$
$\begin{aligned} & \mathbf{2 g} \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrFN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 37.0 \\ & (37.1) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 12.4 \\ & (12.4) \end{aligned}$	$\begin{aligned} & 3086,1602, \quad 1517, \quad 1452, \\ & 1348,1237,1161,963,835 \end{aligned}$	$7.14(2 \mathrm{H}, \mathrm{~m}, \mathrm{ArH}), 7.87 \text { (2 }$ $\mathrm{H}, \mathrm{~m}, \mathrm{ArH})$	$\begin{aligned} & 258\left(73.0 \%, \mathrm{M}^{+}\right), 260(73.8, \\ & \left.\mathrm{M}^{+}+2\right), \quad 153 \quad(100), \quad 137 \\ & (23.1), 139(23.8), 121(30.9) \end{aligned}$
$\begin{aligned} & \text { 2h } \\ & \left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{OS}\right) \end{aligned}$	$\begin{aligned} & 39.8 \\ & (39.9) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (2.6) \end{aligned}$	$\begin{aligned} & 10.3 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 11.9 \\ & (11.8) \end{aligned}$	$\begin{aligned} & 1453,1349,1302, \quad 1258, \\ & 1181,1143,1030,963,822 \end{aligned}$	$\begin{aligned} & 3.86(3 \mathrm{H}, \mathrm{~s}, \mathrm{OMe}), 7.36(4 \\ & \mathrm{H}, \mathrm{dd}, J 17,8, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 270\left(99.2 \%, \mathrm{M}^{+}\right), 272(100, \\ & \left.\mathrm{M}^{+}+2\right), \quad 165 \quad(71.7), \quad 150 \\ & (22.8), 133(45.6) \end{aligned}$
$\begin{aligned} & \mathbf{2 i} \\ & \left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{OS}\right) \end{aligned}$	$\begin{aligned} & 39.85 \\ & (39.9) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (2.6) \end{aligned}$	$\begin{aligned} & 10.3 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 11.9 \\ & (11.8) \end{aligned}$	$\begin{array}{llll} 3009, & 1603, & 1585, & 1460, \\ 1361, & 1250, & 1150, & 1052, \\ 1003, & 863,791 \end{array}$	3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}$), 7.03 (1 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.47 ($3 \mathrm{H}, \mathrm{m}$, ArH)	$\begin{aligned} & 270\left(60.9 \%, \mathrm{M}^{+}\right), 272 \\ & \left.\mathrm{M}^{+}+2\right), 165(100) \end{aligned}$
$\begin{aligned} & \mathbf{2} \mathbf{j} \\ & \left(\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 49.4 \\ & (49.5) \end{aligned}$	$\begin{aligned} & 2.4 \\ & (2.4) \end{aligned}$	$\begin{aligned} & 9.5 \\ & (9.6) \end{aligned}$	$\begin{aligned} & 11.1 \\ & (11.0) \end{aligned}$	$\begin{aligned} & 3056,1593,1475,1331, \\ & 1140,1106,982,931,858, \\ & 813,749 \end{aligned}$	$7.50(2 \mathrm{H}, \mathrm{~m}, \mathrm{ArH}), 7.85(4$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.47$ ($1 \mathrm{H}, \mathrm{s}$, ArH)	$\begin{aligned} & 290\left(16.2 \%, \mathrm{M}^{+}\right), 292(15.3 \\ & \left.\mathrm{M}^{+}+2\right), 153(100) \end{aligned}$
$\begin{aligned} & \mathbf{2 k} \\ & \left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right) \end{aligned}$	$\begin{aligned} & 29.75 \\ & (29.7) \end{aligned}$	$\begin{aligned} & 1.0 \\ & (1.0) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (13.9) \end{aligned}$	$\begin{aligned} & 15.9 \\ & (15.9) \end{aligned}$	$\begin{aligned} & 3042,1590,1465,1338,967 \text {, } \\ & 840,742 \end{aligned}$	8.06 (4 H, s, ArH)	$\begin{aligned} & 402\left(51.2 \%, \mathrm{M}^{+}\right), 404(100, \\ & \left.\mathrm{M}^{+}+2\right), 406\left(56.7, \mathrm{M}^{+}+4\right), \\ & 297(47.8), 299(51.0), 265 \\ & (11.6), 267(11.7), 160(33.9) \end{aligned}$
$\begin{aligned} & \text { 2l } \\ & \left(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right) \end{aligned}$	$\begin{aligned} & 29.8 \\ & (29.7) \end{aligned}$	$\begin{aligned} & 1.0 \\ & (1.0) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (13.9) \end{aligned}$	$\begin{aligned} & 15.9 \\ & (15.9) \end{aligned}$	$\begin{aligned} & 3072,1342(\mathrm{~s}), 1315,1251, \\ & 1168,966,821,794,689,534 \end{aligned}$	$\begin{aligned} & 7.63(1 \mathrm{H}, \mathrm{t}, J 15, \mathrm{ArH}), 8.12 \\ & (2 \mathrm{H}, \mathrm{~d}, J 15, \text { ArH }), 8.46(1 \\ & \mathrm{H}, \mathrm{~s}, \mathrm{ArH}) \end{aligned}$	$\begin{aligned} & 402\left(48.2^{\%}, \mathrm{M}^{+}\right), 404(100, \\ & \left.\mathrm{M}^{+}+2\right), 406\left(52.2, \mathrm{M}^{+}+4\right), \\ & 297(48.7), \quad 299(50.0), 265 \\ & (21.8), 267(25.8), 160(56.1) \end{aligned}$
$\underset{\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)}{ }$	$\begin{aligned} & 40.1 \\ & (40.0) \end{aligned}$	$\begin{aligned} & 1.7 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 11.6 \\ & (11.7) \end{aligned}$	$\begin{aligned} & 13.4 \\ & (13.35) \end{aligned}$	$\begin{aligned} & 3088, \quad 3045, \quad 1603, \quad 1466, \\ & 1349,928,819,789 \end{aligned}$	$\begin{aligned} & 7.89(8 \mathrm{H}, \mathrm{dd}, J 13.6,8.3 \text {, } \\ & \text { ArH) } \end{aligned}$	$\begin{aligned} & 480\left(49.6 \%, \mathrm{M}^{+}\right), 482(100, \\ & \left.\mathrm{M}^{+}+2\right), 484\left(54.0, \mathrm{M}^{+}+4\right), \\ & 376(50.2), \quad 378 \quad(49.3), 344 \\ & (24.1), 346(26.2), 204(46.7) \end{aligned}$

${ }^{a}$ IR spectra of $\mathbf{2 a}-\mathbf{j}$ were taken neat and KBr was used for those of $\mathbf{2 k} \mathbf{k} \mathbf{m}$.

Table 10 Reaction times, yields, and melting points of 3-aryl-4-fluoro-1,2,5-thiadiazoles 3

Compound	Ar	Time (t / h)	Yield (\%) a	$\mathrm{Mp}\left(T /{ }^{\circ} \mathrm{C}\right)^{b}$
3a	$\mathrm{C}_{6} \mathrm{H}_{5}$	5	32	$45-46$ (lit., $\left.{ }^{2} 45\right)$
3b	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	3	47	$56-57$
3c	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	3	61	$76-77$
3d	$\mathrm{C}_{6} \mathrm{H}_{5}$	3	65	$45-46$ (lit., $\left.{ }^{2} 45\right)$

${ }^{a}$ Isolated yields. ${ }^{b} \mathrm{CCl}_{4}$ was used as a solvent for recrystallization.
$\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{FO}$ requires $\left.\mathrm{C}, 32.5 ; \mathrm{H}, 1.7 ; \mathrm{O}, 5.4 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1693(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.14(2 \mathrm{H}$, $\mathrm{t}, J 8.3, \mathrm{ArH})$ and $8.16(2 \mathrm{H}, \mathrm{dd}, J 8.3,3.5, \mathrm{ArH}) ; 2$,2-dibromo-1-(4-methoxyphenyl)ethanone $\mathbf{1 3 h}, \mathrm{mp} 92-93{ }^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{20} 92-93{ }^{\circ} \mathrm{C}$); 2,2-dibromo-1-(3-methoxyphenyl)ethanone 13i, oil (Found: C, 35.05 ; H, 2.6; O, 10.4. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}_{2}$ requires C , $35.1 ; \mathrm{H}, 2.6 ; \mathrm{O}, 10.4 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1693(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$; $80 \mathrm{MHz}) 3.26(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 6.59\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right)$ and $6.61-7.11$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); 2,2-dibromo-1-(2-naphthyl)ethanone 13j, mp $100-102{ }^{\circ} \mathrm{C}$ (from CCl_{4}) (lit., ${ }^{11} 101-102{ }^{\circ} \mathrm{C}$); 1,4-bis(dibromoacetyl)benzene $\mathbf{1 3 k}, \mathrm{mp} 166-168^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: $\mathrm{C}, 25.15 ; \mathrm{H}, 1.3 ; \mathrm{O}, 6.7 . \mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Br}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 25.1 ; \mathrm{H}, 1.3$; $\mathrm{O}, 6.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ;\right.$ $80 \mathrm{MHz}) 7.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right)$ and $8.23(4 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; 1,3-$ bis(dibromoacetyl)benzene 131, mp $54-55^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 25.1; H, 1.3; O, 6.8. $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 25.1 ; \mathrm{H}$,
1.3; $\mathrm{O}, 6.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1693(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-\left[{ }^{2} \mathrm{H}_{6}\right]-$ DMSO; 80 MHz$) 7.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.69(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH})$, $8.32(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH})$ and $8.75(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; 4,4{ }^{\prime}$-bis(dibromoacetyl)biphenyl $\mathbf{1 3 m}$, $\mathrm{mp} 216-217^{\circ} \mathrm{C}$ (from CHCl_{3}) (Found: C, 34.6; H, 1.8; O, 5.8. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Br}_{4} \mathrm{O}_{2}$ requires C , 34.7; $\mathrm{H}, 1.8 ; \mathrm{O}, 5.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1690(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO; 80 MHz$) 7.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right)$ and 7.50 and $7.80(8 \mathrm{H}$, 2 d, J 8.2, ArH).

General procedure for the preparation of 1-aryl-2,2-dichloroethanone oximes 7

To a solution of $\mathbf{1 2}(6-12 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was added hydroxylamine hydrochloride ($18-36 \mathrm{mmol}$). The mixture was stirred for an appropriate time at room temperature. The hydrochloride salt disappeared slowly as the reaction proceeded and a clean solution resulted. After solvent removal, water (30 ml) was added to the reaction mixture to give white solids 7, which were filtered off and recrystallized from CHCl_{3}. When, upon addition of water, yellowish white liquids formed at the bottom of the flask, the mixtures were extracted with EtOAc (100 $\mathrm{ml} \times 2)$ an the extracts dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the extracts gave residues which were chromatographed (silica gel column: $2 \times 10 \mathrm{~cm}$) with benzene as eluent to give compounds 7 contaminated with 12. The crude oximes 7 c and 7 e were recrystallized from CHCl_{3} and that of $7 \mathbf{f}$ from CCl_{4}. Yields, reaction times and melting points of compounds 7 are summarized in Table 1.

Table 11 Analytical, IR, and ${ }^{1} \mathrm{H}$ NMR data for 3-aryl-4-fluoro-1,2,5-thiadiazoles 3

Compd. (Formula)	Found (\%) (Required)				$v_{\text {max }}{ }^{a} / \mathrm{cm}^{-1}$	$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right)$	m / z (EI)
	C	H	N	S			
$\begin{aligned} & \mathbf{3 b} \\ & \left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 55.6 \\ & (55.7) \end{aligned}$	$\begin{aligned} & 3.6 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 14.4 \\ & (14.4) \end{aligned}$	$\begin{aligned} & 16.6 \\ & (16.5) \end{aligned}$	$\begin{aligned} & 3072,1613,1510,1435, \\ & 1302,1284,1190,1037,823, \\ & 736 \end{aligned}$	$\begin{aligned} & 2.35(3 \mathrm{H}, \mathrm{~s}, \mathrm{Me}), 7.54(4 \mathrm{H}, \\ & \mathrm{dd}, J 49,8, \operatorname{ArH}) \end{aligned}$	$\begin{aligned} & 194\left(100 \%, \mathrm{M}^{+}\right), 149(1.06), \\ & 116(2.2) \end{aligned}$
$\begin{aligned} & \text { 3c } \\ & \left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{BrFN}_{2} \mathrm{~S}\right) \end{aligned}$	$\begin{aligned} & 37.05 \\ & (37.1) \end{aligned}$	$\begin{aligned} & 1.55 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 12.4 \\ & (12.4) \end{aligned}$	$\begin{aligned} & 3071,1588,1495, \quad 1445, \\ & 1309,1124,958,810 \end{aligned}$	7.66 (4 H, dd, J22, 8, ArH)	$\begin{aligned} & 258\left(100 \%, \mathrm{M}^{+}\right), \quad 260(94.7, \\ & \left.\mathrm{M}^{+}+2\right), \quad 215 \quad(2.43), \quad 197 \\ & (12.1), 182(4.3) \end{aligned}$

${ }^{a}$ IR spectra were taken neat.

2,2-Dichloro-1-phenylethanone oxime 7a. E / Z mixture (46:54) (Found: C, 47.0; $\mathrm{H}, 3.5 ; \mathrm{N}, 6.9 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 47.1 ; \mathrm{H}$, $3.5 ; \mathrm{N}, 6.9 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3296(\mathrm{OH}), 3056$ and 1599 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.48$ and $7.40\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHCl}_{2}\right), 7.36(3 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$, $7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.61(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}$ (EI) $203\left(100 \%, \mathrm{M}^{+}\right), 205\left(66.2, \mathrm{M}^{+}+2\right)$ and $207\left(9.8, \mathrm{M}^{+}+4\right)$.

2,2-Dichloro-1-(4-methylphenyl)ethanone oxime 7b. E / Z mixture (41:59) (Found: $\mathrm{C}, 49.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 6.4 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 49.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 6.4 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3296(\mathrm{OH})$, 3040 and $1603 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.45$ and $7.30\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHCl}_{2}\right), 7.38(4 \mathrm{H}, \mathrm{dd}, J 16,8, \mathrm{ArH})$ and $8.82(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}) ; m / z(\mathrm{EI}) 217\left(100 \%, \mathrm{M}^{+}\right), 219\left(67.3, \mathrm{M}^{+}+2\right)$ and 221 (11.4, $\mathrm{M}^{+}+4$).

2,2-Dichloro-1-(4-nitrophenyl)ethanone oxime 7c. Z-form (Found: C, 38.5; H, 2.45; N, 11.2, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 38.6; H, 2.4; N, 11.25\%); $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3216(\mathrm{OH}), 3040,1600$, 1520 s and $1346 \mathrm{~s} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 7.58(1 \mathrm{H}$, s, $\left.\mathrm{CHCl}_{2}\right), 8.12(4 \mathrm{H}, \mathrm{dd}, J 20,7, \mathrm{ArH})$ and $13.07(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $m / z(E I) 248\left(100 \%, \mathrm{M}^{+}\right), 250\left(65.9, \mathrm{M}^{+}+2\right)$ and $252(10.5$, $\left.\mathrm{M}^{+}+4\right)$.

2,2-Dichloro-1-(3-nitrophenyl)ethanone oxime 7d. E/Z mixture (36:64) (Found: C, 38.65; H, 2.5; N, 11.2. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 38.6 ; \mathrm{H}, 2.4 ; \mathrm{N}, 11.25 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3392(\mathrm{OH})$, $3040,1610,1520 \mathrm{~s}$ and $1345 \mathrm{~s} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right)$ 6.41 and $7.60\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHCl}_{2}\right), 7.97(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.50 and $10.12(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 248\left(100 \%, \mathrm{M}^{+}\right), 250(63.8$, $\left.\mathrm{M}^{+}+2\right)$ and $252\left(8.9, \mathrm{M}^{+}+4\right)$.

1-(4-Bromophenyl)-2,2-dichloroethanone oxime 7e. Z-form (Found: C, 33.9; H, 2.1; N, 4.9. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrCl}_{2} \mathrm{NO}$ requires $\mathrm{C}, 34.0$; $\mathrm{H}, 2.1 ; \mathrm{N}, 4.95 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3312(\mathrm{OH}), 3040$ and 1587 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 7.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 7.52(4$ $\mathrm{H}, \mathrm{dd}, J 20,8, \mathrm{ArH}), 12.42(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; m / z(\mathrm{EI}) 281(100 \%$, $\left.\mathrm{M}^{+}\right), 283\left(163.2, \mathrm{M}^{+}+2\right), 285\left(74.8, \mathrm{M}^{+}+4\right), 287$ (9.7, $\left.\mathrm{M}^{+}+6\right)$.

1-(4-Chlorophenyl)-2,2-dichloroethanone oxime 7f. Z-form (Found: C, $40.5 ; \mathrm{H}, 2.5 ; \mathrm{N}, 5.9 . \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}$ requires $\mathrm{C}, 40.3 ; \mathrm{H}$, $2.5 ; \mathrm{N}, 5.9 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3295(\mathrm{OH}), 3040$ and 1588 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) .7 .42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right), 7.45(4 \mathrm{H}, \mathrm{dd}, J 23$, 8, ArH$)$ and $9.23(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{OH}) ; m / z(\mathrm{EI}) 237\left(100 \%, \mathrm{M}^{+}\right), 239$ $\left(97.5, \mathrm{M}^{+}+2\right)$ and $241\left(30.8, \mathrm{M}^{+}+4\right)$.

2,2-Dichloro-1-(4-fluorophenyl)ethanone oxime $7 \mathrm{~g} . \mathrm{E} / \mathrm{Z}$ mixture (16:84) (Found: C, 43.2; H, 2.7; N, 6.3. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{FNO}$ requires $\mathrm{C}, 43.3 ; \mathrm{H}, 2.7 ; \mathrm{N}, 6.3 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3264(\mathrm{OH})$, 3040 and $1597 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.50$ and $7.41(1 \mathrm{H}, 2 \mathrm{~s}$, $\left.\mathrm{CHCl}_{2}\right), 6.99(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.83$ and 10.23 $(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{br}, \mathrm{OH}) ; m / z(\mathrm{EI}) 221\left(100 \%, \mathrm{M}^{+}\right), 223\left(65.5, \mathrm{M}^{+}+2\right)$ and $225\left(11.1, \mathrm{M}^{+}+4\right)$.

1-(3-Chloro-4-methoxyphenyl)-2,2-dichloroethanone oxime 7h. E / Z mixture ($31: 69$) (Found: C, $40.2 ; \mathrm{H}, 3.0 ; \mathrm{N}, 5.2$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{3} \mathrm{NO}_{2}$ requires C, 40.3; $\mathrm{H}, 3.0 ; \mathrm{N}, 5.2 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ $3360(\mathrm{OH}), 3024$ and $1594 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 3.83(3 \mathrm{H}, \mathrm{s}$, $\mathrm{MeO}), 6.48$ and $7.37\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHCl}_{2}\right), 6.91$ and $6.95(1 \mathrm{H}, 2 \mathrm{~d}, J$ 8.8, 8.2, ArH), $7.60(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.50(1 \mathrm{H}, \mathrm{s}, \mathrm{br}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}$ (EI) $267\left(100 \%, \mathrm{M}^{+}\right), 269\left(96.7, \mathrm{M}^{+}+2\right)$ and 271 (32.1, $\left.\mathrm{M}^{+}+4\right)$.

1,4-Bis(dichloroacetyl)benzene dioxime 7i. Z-form (Found: C,
36.4; $\mathrm{H}, 2.45$; $\mathrm{N}, 8.5$; $\mathrm{O}, 9.8 . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 36.4 ; \mathrm{H}$, $2.4 ; \mathrm{N}, 8.5 ; \mathrm{O}, 9.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 3042$ and 1610; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 7.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right)$, $7.50(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.84(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 11.93(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $12.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

1,3-Bis(dichloroacetyl)benzene dioxime 7j. E / Z mixture (33:67) (Found: C, 36.45; H, 2.45; N, 8.5; O, 9.6. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 36.4 ; \mathrm{H}, 2.4 ; \mathrm{N}, 8.5 ; \mathrm{O}, 9.7 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3290$ $(\mathrm{OH}), 3026$ and $1600 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 6.47$ and $7.34\left(2 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{CHCl}_{2}\right), 7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.45(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and 11.34 and $12.01(2 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OH})$.
4.4'-Bis(dichloroacetyl)biphenyl dioxime 7 k . Z-form (Found: C, 47.4; H, 3.0; N, 6.8; O, 7.8. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 47.3; $\mathrm{H}, 3.0 ; \mathrm{N}, 6.9 ; \mathrm{O}, 7.9 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 3042$ and 1602; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 7.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CHCl}_{2}\right)$, 7.49 (4 H, d, $J 8.2, \mathrm{ArH}), 7.79$ ($4 \mathrm{H}, 2 \mathrm{~d}, J 8.2$, ArH), 11.97 (1 H , $\mathrm{s}, \mathrm{OH})$ and $12.63(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

General procedure for the preparation of 3-aryl-4-chloro-1,2,5thiadiazoles 1

To a solution of $7(0.63-2.3 \mathrm{mmol})$ in 1,4-dioxane ($10-15 \mathrm{ml}$) was added $\mathrm{S}_{4} \mathrm{~N}_{4}(0.63-2.3 \mathrm{mmol})$. The mixture was heated at reflux until no spot corresponding to 7 was observed on TLC $\left(R_{\mathrm{F}} \cong 0.09, \mathrm{C}_{6} \mathrm{H}_{6}\right)$, after which the solvent was removed in vacuo. The residue was extracted with $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ and the extracts were evaporated. Chromatography of the residue on a silica gel column $(2 \times 12 \mathrm{~cm})$ using hexane $(200 \mathrm{ml})$ as eluent gave sulfur and a minute amount of unknown compounds. Elution with hexane-benzene $(3: 1 ; 120 \mathrm{ml})$ gave compounds 1. Elution with the same solvent mixture $(1: 1 ; 100 \mathrm{ml})$ gave unchanged $\mathrm{S}_{4} \mathrm{~N}_{4}$. Reaction times, yields, and melting points of compounds 1 prepared are summarized in Table 6 and their analytical, IR and ${ }^{1} \mathrm{H}$ NMR data in Table 7.

General procedure for the preparation of 1-aryl-2,2-dibromoethanone oximes 8

The experimental procedures are basically the same as those for the preparation of 7 . Reaction times, yields, and melting points of compounds $\mathbf{8}$ are summarized in Table 8.

2,2-Dibromo-1-phenylethanone oxime 8a. E / Z mixture (29:71) (Found: C, 32.8; H, 2.4; N, 4.75. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Br}_{2} \mathrm{NO}$ requires C, $32.8 ; \mathrm{H}, 2.4 ; \mathrm{N}, 4.8 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3298(\mathrm{OH}), 3046$, 1491, 1399, 1281, 996, 950, 845, 781 and $694 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80\right.$ $\mathrm{MHz}) 6.59$ and $7.44\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHBr}_{2}\right), 7.42(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.73$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 9.23 and $9.77(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OH})$.
2,2-Dibromo-1-(4-methylphenyl)ethanone oxime 8b. Z-form (Found: C, 35.2; H, 2.95; N, 4.5. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}$ requires $\mathrm{C}, 35.2$; $\mathrm{H}, 2.95 ; \mathrm{N}, 4.6 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3297(\mathrm{OH}), 3040$ and 1600 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.65(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CHBr}_{2}\right), 7.58(4 \mathrm{H}, \mathrm{dd}, J 54,8, \mathrm{ArH})$ and $10.03(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $m / z(\mathrm{EI}) 305\left(14.4 \% \mathrm{M}^{+}\right), 307\left(27.2, \mathrm{M}^{+}+2\right), 309\left(13.0, \mathrm{M}^{+}+4\right)$ and 134 (100).
2,2-Dibromo-1-(4-nitrophenyl)ethanone oxime 8c. Z-form (Found: C, 28.5; H, 1.8; N, 8.3. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C , 28.4; $\mathrm{H}, 1.8 ; \mathrm{N}, 8.3 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3296(\mathrm{OH}), 3030,1602,1570 \mathrm{~s}$ and $\left.1347 \mathrm{~s} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO} ; 80 \mathrm{MHz}\right) 7.54(1 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CHBr}_{2}\right), 8.11(4 \mathrm{H}, \mathrm{dd}, J 22,8, \mathrm{ArH})$ and $10.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}$ (EI) $338\left(0.8 \%, \mathrm{M}^{+}\right), 340\left(1.2, \mathrm{M}^{+}+2\right), 342\left(0.7, \mathrm{M}^{+}+4\right)$ and 117 (100).

2,2-Dibromo-1-(3-nitrophenyl)ethanone oxime 8d. E / Z mixture (36:64) (Found: C, 28.4; H, 1.8; N, 8.3. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 28.4; H, 1.8; $\mathrm{N}, 8.3 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3408(\mathrm{OH})$, $3088,1613,1592 \mathrm{~s}$ and $1350 \mathrm{~s} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$)$ 6.42 and $7.59\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHBr}_{2}\right), 7.96(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.29$ and $9.88(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OH}) ; m / z(\mathrm{EI}) 338\left(3.2 \%, \mathrm{M}^{+}\right), 340\left(4.8, \mathrm{M}^{+}+2\right)$, $342\left(2.6, \mathrm{M}^{+}+4\right)$ and 117 (100).

1-(4-Bromophenyl)-2,2-dibromoethanone oxime 8e. Z-form (Found: C, 25.8; H, 1.6; N, 3.8. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{NO}$ requires $\mathrm{C}, 25.8 ; \mathrm{H}$, $1.6 ; \mathrm{N}, 3.8 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 3041$ and 1588 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 7.45\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.66(4$ H, dd, $J 21,8, \mathrm{ArH}$) and $11.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; m / z(\mathrm{EI}) 368(1.5 \%$, M^{+}), $370\left(5.1, \mathrm{M}^{+}+2\right), 372\left(6.1, \mathrm{M}^{+}+4\right), 374\left(1.7, \mathrm{M}^{+}+6\right)$ and 182 (100).

1-(4-Chlorophenyl)-2,2-dibromoethanone oxime 8f. Z-form (Found: C, 29.3; H, 1.85; N, 4.3. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{3} \mathrm{NO}$ requires C, 29.35; $\mathrm{H}, 1.85 ; \mathrm{N}, 4.3 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3292(\mathrm{OH}), 3040$ and 1591; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 7.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.59(4$ $\mathrm{H}, \mathrm{dd}, J 35,8.4, \mathrm{ArH}$) and 12.59 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$); m/z (EI) 325 $\left(4.0 \%, \mathrm{M}^{+}\right), 327\left(6.7, \mathrm{M}^{+}+2\right), 329\left(4.8, \mathrm{M}^{+}+4\right)$ and 136 (100).

2,2-Dibromo-1-(4-fluorophenyl)ethanone oxime 8g. E / Z mixture (34:66) (Found: C, 30.9; H, 1.9; N, 4.55. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{FNO}$ requires C, $30.9 ; \mathrm{H}, 1.9 ; \mathrm{N}, 4.5 \%)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3288(\mathrm{OH})$, 3040 and 1598; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-{ }^{2} \mathrm{H}_{6}\right]$-DMSO; 80 MHz$) 6.46$ and 7.24 $(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CHBr} 2), 6.45(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 8.63 and $9.40(1 \mathrm{H}, 2$ $\mathrm{s}, \mathrm{OH}) ; m / z(\mathrm{EI}) 309\left(2.0 \%, \mathrm{M}^{+}\right), 311\left(5.5, \mathrm{M}^{+}+2\right), 313(3.5$, $\left.\mathrm{M}^{+}+4\right)$ and 151 (100).
2,2-Dibromo-1-(4-methoxyphenyl)ethanone oxime 8 h . Z-form (Found: C, 33.4; H, 2,8; N, 4.3. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}$ requires $\mathrm{C}, 33.5 ; \mathrm{H}$, 2.8; $\mathrm{N}, 4.3 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3296(\mathrm{OH}), 3039$ and 1603 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO})$, $7.47(1$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.51(4 \mathrm{H}, \mathrm{dd}, J 70,8, \mathrm{ArH})$ and $10.63(1 \mathrm{H}, \mathrm{s}$, OH); m / z (EI) $321\left(3.5 \%, \mathrm{M}^{+}\right), 323\left(3.9, \mathrm{M}^{+}+2\right), 325(2.9$, $\left.\mathrm{M}^{+}+4\right)$ and 135 (100).
2,2-Dibromo-1-(3-methoxyphenyl)ethanone oxime 8i. Z-form (Found: C, 33.4; H, 2.8; N, 4.4. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}$ requires $\mathrm{C}, 33.5 ; \mathrm{H}$, 2.8; $\mathrm{N}, 4.3 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3302,1600,1507,1437,1299$, 1189, 1020, 961 and 832; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$)$ $3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}), 7.09(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.48\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right)$, $7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.72(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; m / z (EI) $321(1.9 \%$, M^{+}), $323\left(2.3, \mathrm{M}^{+}+2\right), 325\left(1.7, \mathrm{M}^{+}+4\right)$ and $135(100)$.
2,2-Dibromo-1-(2-naphthyl)ethanone oxime $\mathbf{8 j}$. Z-form (Found: C, $40.1 ; \mathrm{H}, 2.65 ; \mathrm{N}, 4.05 . \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NO}$ requires $\mathrm{C}, 40.0$; $\mathrm{H}, 2.6 ; \mathrm{N}, 4.1 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 3072$ and 1597; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone; 80 MHz$) 7.45(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.83(4$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 8.68(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 10.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$); m / z (EI) $341\left(2.7 \%, \mathrm{M}^{+}\right), 343\left(3.0, \mathrm{M}^{+}+2\right), 345$ $\left(2.5, \mathrm{M}^{+}+4\right)$ and 153 (100).

1,4-Bis(dibromoacetyl)benzene dioxime $\mathbf{8 k}$. (Found: C, 23.6; $\mathrm{H}, 1.6 ; \mathrm{N}, 5.6 ; \mathrm{O}, 6.4 . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 23.65; H, 1.6; $\mathrm{N}, 5.5 ; \mathrm{O}, 6.3 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{OH}), 3042$ and 1610 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 7.18\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CHBr}_{2}\right)$, $7.50(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.84(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 11.93(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $12.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

1,3-Bis(dibromoacetyl)benzene dioxime 81. (Found: C, 23.7; $\mathrm{H}, 1.6$; N, 5.5; O, 6.2. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 23.65 ; H, 1.6; $\mathrm{N}, 5.5 ; \mathrm{O}, 6.3 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3296 \mathrm{~s}, 3040,2880,1435,1377$, $1264,1045,979,806$ and $714 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.43(1 \mathrm{H}, \mathrm{s}$, CHBr_{2}), $7.29\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHBr}_{2}\right), 7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.40(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $9.89(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

4,4'-Bis(dibromoacetyl)biphenyl dioxime 8m. (Found: C, 33.0; $\mathrm{H}, 2.1 ; \mathrm{N}, 4.75 ; \mathrm{O}, 5.45 . \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{Br}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 32.9 ; \mathrm{H}, 2.1$; $\mathrm{N}, 4.8 ; \mathrm{O}, 5.5 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3285(\mathrm{OH}), 3040$ and 1608 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO; 80 MHz$) 7.66(8 \mathrm{H}, \mathrm{dd}, J 24,8.3$, $\mathrm{ArH}), 7.75\left(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CHBr}_{2}\right), 11.93(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $12.52(1$ $\mathrm{H}, \mathrm{s}, \mathrm{OH}$).

General procedure for the preparation of 3-aryl-4-bromo-1,2,5thiadiazoles 2
To a solution of $\mathbf{8}(1.0-3.6 \mathrm{mmol})$ in 1,4-dioxane (15 ml) was added $\mathrm{S}_{4} \mathrm{~N}_{4}(1.0-4.2 \mathrm{mmol})$. The mixture was heated at reflux until no spot corresponding to 8 was observed on TLC ($R_{\mathrm{F}} \cong 0.2, \mathrm{C}_{6} \mathrm{H}_{6}$). After solvent removal in vacuo from the reaction mixture, the residue was chromatographed on a silica gel column ($2 \times 10 \mathrm{~cm}, 70-230 \mathrm{mesh})$. Hexane (200 ml) as eluent gave sulfur and hexane-benzene ($4: 1 ; 200 \mathrm{ml}$) gave unchanged $\mathrm{S}_{4} \mathrm{~N}_{4}$; subsequently the same mixture $(2: 1 ; 200 \mathrm{ml})$ gave compounds 2. Reaction times, yields, and melting points of compounds 2 are summarized in Table 8 and their analytical, IR, and ${ }^{1} \mathrm{H}$ NMR data in Table 9.

General procedure for the preparation of 1-aryl-2-bromo-2fluoroethanones ${ }^{8} 14$

To a solution of the appropriate 1-aryl-2-fluoroethanone ${ }^{9} 13$ (5.7-8.0 mmol) in glacial acetic acid ($15-30 \mathrm{ml}$) was added bromine ($7.5-8.2 \mathrm{mmol}$). The mixture was stirred for $5-10 \mathrm{~h}$ at $40-50^{\circ} \mathrm{C}$ and quenched when no spot corresponding to $\mathbf{1 3}$ appeared on TLC ($R_{\mathrm{F}} \cong 0.4$, ethyl acetate $-n$-hexane, $1: 4$). The reaction mixture was worked up as described in the literature. Reaction times and yields of $\mathbf{1 4}$ are summarized in Table 5. 2-Bromo-2-fluoro-1-phenylethanone $\mathbf{1 4 a}, \mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13}$ $55^{\circ} \mathrm{C}$); 2-bromo-2-fluoro-1-(4-methylphenyl) ethanone 14b, mp $64-66^{\circ} \mathrm{C}$ (Found: C, 46.7 ; H, 3.95; Br, 34.8. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrFO}$ requires C, $46.8 ; \mathrm{H}, 3.9 ; \mathrm{Br}, 34.6 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1698(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.67(\mathrm{~d}, 1 \mathrm{H}, J 51$, $\mathrm{CHBrF})$ and $7.75(4 \mathrm{H}, \mathrm{dd}, J 39,8, \mathrm{ArH}) ; m / z$ (EI) $230(51.6 \%$, M^{+}), 232 ($52.9, \mathrm{M}^{+}+2$), 151 (32.6) and 91 (100); 2-bromo-2-fluoro-1-(4-bromophenyl) ethanone 14c, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$ (Found: C, 32.4; H, 1.7; Br, 54.2. $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{Br}_{2} \mathrm{FO}$ requires C, 32.5; H, 1.7; Br, $54.0 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1702(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right) 6.69$ $(1 \mathrm{H}, \mathrm{d}, J 51, \mathrm{CHBrF})$ and $7.99(4 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}) ; m / z$ (EI) $294\left(23.8 \% \mathrm{M}^{+}\right), 296\left(47.1, \mathrm{M}^{+}+2\right), 298\left(19.2, \mathrm{M}^{+}+4\right), 215$ (100) and 217 (98.2); 2-chloro-2-fluoro-1-phenylethanone 14d, mp $45-46^{\circ} \mathrm{C}$ (lit., ${ }^{13} 45^{\circ} \mathrm{C}$).

General procedure for the preparation of 1-aryl-2-bromo-9 and

 1-aryl-2-chloro-2-fluoroethanone oximes 10The experimental procedures are basically the same as those for the preparation of 7 except for quenching of the reaction by addition of water to the mixture when no spot corresponding to 13 had appeared on TLC ($R_{\mathrm{F}} \cong 0.4$, ethyl acetate-hexane, $1: 4$). Reaction times, yields, and melting points of $\mathbf{9}$ and $\mathbf{1 0}$ are summarized in Table 5.

2-Bromo-2-fluoro-1-phenylethanone oxime 9a. Z-form (Found: C, 41.4; H, 3.0; N, 6.0. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrFNO}$ requires $\mathrm{C}, 41.4 ; \mathrm{H}, 3.0 ; \mathrm{N}$, $6.0 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3312(\mathrm{OH}), 3072,1452,1382,1314$, 1159, 1095, 1066, 954, 772 and $398 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone; $80 \mathrm{MHz}) 7.35(3 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.56(1 \mathrm{H}, \mathrm{d}, J 48, \mathrm{CHBrF}), 7.64$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$) and $10.12(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.

2-Bromo-2-fluoro-1-(4-methylphenyl)ethanone oxime 9b. Zform (Found: C, $43.7 ; \mathrm{H}, 3.7 ; \mathrm{N}, 5.8 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrFNO}$ requires C , 43.9; H, 3.7; N, 5.7\%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3296(\mathrm{OH}), 1607,1514$, $1475,1443,1094,1063,957,820$ and $746 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\right.$ [${ }^{2} \mathrm{H}_{6}$]-acetone; 80 MHz$) 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.50(1 \mathrm{H}, \mathrm{d}, J 50$, $\mathrm{CHBrF}), 7.61(4 \mathrm{H}, \mathrm{dd}, J 43,8, \mathrm{ArH})$ and $11.12(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; $m / z(E I) 245\left(20.4 \%, \mathrm{M}^{+}\right), 247\left(17.4, \mathrm{M}^{+}+2\right)$ and $123(100)$.

2-Bromo-2-fluoro-1-(4-bromophenyl)ethanone oxime 9c. Z form (Found: C, $30.85 ; \mathrm{H}, 1.9 ; \mathrm{N}, 4.5 . \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{FNO}$ requires C, $30.9 ; \mathrm{H}, 1.9 ; \mathrm{N}, 4.5 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3298$ (OH), 1603, $1509,1430,1045,972,896,880$ and $753 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}-\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ acetone; 80 MHz) $7.53(1 \mathrm{H}, \mathrm{d}, J 48, \mathrm{CHBrF}), 7.58(4 \mathrm{H}, \mathrm{dd}, J$ $15,8, \mathrm{ArH})$ and $10.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$.
2-Chloro-2-fluoro-1-phenylethanone oxime 10. E / Z mixture (Found: C, 51.15; H, 3.8; N, 7.45; O, 8.6. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClFNO}$ requires C, $51.2 ; \mathrm{H}, 3.8 ; \mathrm{N}, 7.5 ; \mathrm{O}, 8.5 \%) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3312(\mathrm{OH})$, 3072, 1572, 1470, 1101, 1066, 967 and $797 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 80 \mathrm{MHz}\right)$ 6.71 and $7.54(1 \mathrm{H}, 2 \mathrm{~d}, J 48, \mathrm{CHClF}), 7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.34$
$(3 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 9.59$ and $10.04(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{OH}) ; m / z$ (EI) 187 $\left(31.8 \%, \mathrm{M}^{+}\right), 189\left(11.7, \mathrm{M}^{+}+2\right), 120(65.4)$ and 77 (100).

General procedure for the preparation of 3-aryl-4-fluoro-1,2,5thiadiazoles 3

To a solution of $\mathbf{1 4}(1.5-1.6 \mathrm{mmol})$ in 1,4-dioxane $(15 \mathrm{ml})$ was added $\mathrm{S}_{4} \mathrm{~N}_{4}(1.5-1.6 \mathrm{mmol})$. The mixture was heated at reflux until no spot corresponding to $\mathbf{1 4}$ was observed on TLC $\left(R_{\mathrm{F}} \cong 0.18, \mathrm{C}_{6} \mathrm{H}_{6}\right)$. After removal of the solvent in vacuo from the reaction mixture, the residue was chromatographed on a silica gel column $(2 \times 10 \mathrm{~cm})$. Hexane $(200 \mathrm{ml})$ as eluent gave a sulfur and hexane-benzene $(4: 1 ; 200 \mathrm{ml})$ gave unchanged $\mathrm{S}_{4} \mathrm{~N}_{4}$. Subsequent elution with the same solvent mixture $(2: 1 ; 200 \mathrm{ml})$ gave compounds 3. Reaction times, yields, and melting points of compounds 3 are summarized in Table 10, and their analytical, IR, and ${ }^{1} \mathrm{H}$ NMR data in Table 11.

X-Ray structure analysis of compound 7f

Crystal data: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}, M=238.49$, Triclinic, $a=6.467$ (3), $b=7.218$ (2), $c=11.038$ (5) $\AA, a=85.79$ (3), $\beta=74.33$ (4), $\gamma=76.13(3)^{\circ}, V=481.6$ (3) A^{3} [by least-squares refinement on diffractometer angles for 25 automatically centred reflections with $23 \leqslant 2 \theta \leqslant 30^{\circ}, \lambda=0.71096 \AA, T=293$ (2) K], space group $P \overline{1} Z=2, D_{\mathrm{x}}=1.645 \mathrm{~g} \mathrm{~cm}^{-3}$, colourless crystals were grown from $\mathrm{CHCl}_{3}, F(000)=240.00, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=9.1 \mathrm{~cm}^{-1}$

Data collection and processing. An Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo-K α radiation, $\omega / 2 \theta$ scans with ω scan width $(0.65+0.35 \tan \theta)^{\circ} ; 1536$ reflections measured $\left(1.8 \leqslant \theta \leqslant 25^{\circ}, \quad 0 \leqslant h \leqslant 7, \quad-8 \leqslant k \leqslant 8, \quad-12 \leqslant l\right.$ $\leqslant 13$), giving 1404 with $I \geqslant 2 \sigma(I)$.

Structure solution and refinement. Automatic direct methods ${ }^{21}$ (all non-H atoms). Full-matrix least-squares refinement ${ }^{22}$ on F^{2} with all non-H atoms anisotropic; hydrogen atoms were located from the successive electron density maps and their positions and isotropic thermal parameters were refined with no constraint. Final $R_{1}[I \geqslant 2 \sigma(I)]=0.0345 ; w R_{2}$ [all data] $=0.1225, S\left[F^{2}\right]=0$ for 119 refined parameters $(R$ indices defined in ref. 21). The final ΔF synthesis showed no peaks outside the range $-0.417 \rightarrow+0.528$ e \AA^{-3}. Fig. 1 was produced using SHELXTL/PC. ${ }^{23}$ Atomic coordinates and equivalent isotropic and anisotropic displacement parameters, and bond distances and angles, have been deposited at the Cambridge Crystallographic Data Centre and are available on request. Any such request should be accompanied by a full bibliographic citation for this work together with the reference number 207/156. \dagger

Acknowledgements

The authors are grateful for the financial support by the center for Basic Science Research Institute Program, Ministry of Education (BSRI-96-3417).
\dagger For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans 1, available via the RSC web pages (http:// www.rsc.org/authors).

References

1 K. D. Kearney, Eur. Pat. Appl., EP 0414 511/1990 (Chem. Abstr., 1991, 115, 29 342s).
2 J. F. Engel and J. M. Puglis, U.S. Patent 4555 521/1985 (Chem. Abstr., 1986, 124, 64 226b).
3 (a) L. M. Weinstock, P. Davis, B. Handelsman and R. Tull, J. Org. Chem., 1967, 32, 2823; (b) Y. Hanasaki, H. Watanabe, K. Katsuura, H. Takayama, S. Shirakawa, K. Yamaguchi, S. Sakai, K. Ijichi, M. Fujiwara, K. Konno, T. Yokota, S. Shigeta and M. Baba, J. Med. Chem., 1995, 38, 2038
4 Y. Hanazaki, H. Watanabe and K. Tsuzuki, Jpn. Kokai Tokkyo Koho, JP 05, 163 257/1993 (Chem. Abstr., 1993, 119, 271 175j).
5 K. Kim and J. Cho, Heterocycles, 1994, 38, 1859
6 K.-J. Kim, H.-S. Lee and K. Kim, J. Heterocycl. Chem., 1996, 33, 295.

7 (a) J. H. Smith, J. H. Heidema, E. T. Kaiser, J. B. Wetherington and J. W. Moncrief, J. Am. Chem. Soc., 1972, 94, 9274; (b) J. H. Smith, J. H. Heidema, E. T. Kaiser, J. B. Wetherington and J. W. Moncrief, J. Am. Chem. Soc., 1972, 94, 9276.

8 D. R. Baker and A. D. Gutman, U.S. Patent 4441 916/1984 (Chem. Abstr., 1984, 101, 50 147c).
9 When the reaction of 11a with hydroxylamine hydrochloride was carried out at reflux temperature, a mixture of $\mathbf{7 a}, \mathbf{5 a}$, and 2,2,2-trichloro-1-phenylethanone oxime was formed
10 R. N. McDonald and R. C. Cousine, J. Org. Chem., 1980, 45, 2976
11 (a) V. P. Kravets, G. I. Chervenyuk and G. V. Grinev, Zh. Org. Khim., 1966, 2, 1244; (b) K. Kim, J. Cho and S. C. Yoon, J. Chem. Soc., Perkin Trans. 1, 1995, 253.
12 X. Creary, J. Org. Chem., 1987, 52, 5026
13 (a) F. Bergman, A. Kalmus and S. Vromen, J. Am. Chem. Soc., 1955, 77, 2494; (b) G. A. Olah, J. T. Welch, Y. D. Vandar, M. Nojima, I. Kerekes and J. A. Olah, J. Org. Chem., 1979, 44, 3872.

14 (a) S. Mataka, A. Hosoki, K. Takahasi and M. Tashiro, J. Heterocycl. Chem., 1980, 17, 1681; (b) D. H. Barton and W. A. Bubb, J. Chem. Soc., Perkin Trans. 1, 1977, 916; (c) T. Tashiro and S. Mataka, Chem. Lett., 1976, 627.
15 The formation of the nitroso olefins 19 in the presence of NaHCO_{3} or $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was confirmed by trapping experiments.
16 S. Mataka, K. Takahashi, S. Ishii and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1979, 2905.
17 Gmelin's Handbook of Inorganic Chemistry, Sulfur-Nitrogen Compounds, Part 2 B, ed. B. Heibel, Springer-Verlag, Berlin, 8th edn., 1984, ch. 5, p. 127.
18 F. Weygand and H. J. Bestmann, Chem. Ber., 1957, 90, 1230.
19 K. Kurosawa and K. Yamaguchi, Bull. Chem. Soc. Jpn, 1981, 54, 1757.

20 G. Weber, S. Hauptmann, H. Wilde and G. Mann, Synthesis, 1983, 3, 191.
21 G. M. Sheldrick, SHELXS-86, Acta Crystallogr., Sect. A, 1990, 46, 467.

22 G. M. Sheldrick, SHELXS-93, University of Göttingen, Germany, 1993.

23 G. M. Sheldrick, SHELXTL/PC version 5.03, Siemens Analytical Instrumentation Inc., Madison, WI, 1994.

Paper 7/04408I
Received 23rd June 1997
Accepted 11th September 1997

